Evaluación y acreditación universitaria: Integración de la inteligencia artificial en los sistemas de calidad
DOI:
https://doi.org/10.59814/resofro.2024.4(6)511Palabras clave:
acreditación universitaria, evaluación de la calidad, inteligencia artificial, modernización de la educación superior, sistemas de gestión de calidadResumen
La presente investigación analiza el potencial de integrar sistemas de Inteligencia Artificial (IA) en los procesos de evaluación y acreditación universitaria, con el objetivo de optimizar su eficiencia, objetividad y precisión. Mediante un enfoque metodológico mixto, se realizó un análisis documental exhaustivo, un estudio de casos múltiples en 25 instituciones de educación superior, y un análisis empírico que incluyó entrevistas, cuestionarios y observación sistemática. Los resultados revelan mejoras significativas en la eficiencia de los procesos, con una reducción considerable en los tiempos totales de evaluación. Asimismo, se observó un incremento en la consistencia y objetividad de las evaluaciones, con altos niveles de confiabilidad estadística. La implementación de sistemas de IA también generó importantes ahorros en recursos humanos. Sin embargo, el estudio también identificó desafíos relacionados con la resistencia inicial del personal y la necesidad de una mayor capacitación. En conclusión, la integración de IA en los procesos de acreditación universitaria representa un avance significativo hacia la modernización y mejora continua de la calidad educativa.
Descargas
Métricas
Citas
Anderson, J. R., Wilson, K., & Thompson, M. (2023). Predictive analytics in institutional performance: A machine learning approach. Higher Education Research & Development, 42(3), 541-556.
Barrett, R. M., & Liu, S. (2023). Advanced predictive modeling in educational quality assessment. Predictive Analytics in Education, 15(2), 178-195.
Brown, T., & Rodríguez, M. (2023). Adaptive systems in educational quality assessment: A comparative study. International Journal of Educational Technology, 18(4), 412-428.
Cardoso, S., Rosa, M. J., & Stensaker, B. (2019). Quality assurance and evaluation in higher education: Mapping the field and its development. Quality Assurance in Education, 27(1), 7-23.
Chapman, K. L., & Ortega, R. (2023). Virtual reality applications in educational quality assessment. Virtual Reality in Educational Assessment, 8(2), 145-162.
Chen, H., & Robertson, P. (2020). Digital transformation in quality assurance: A five-year longitudinal study. Assessment & Evaluation in Higher Education, 45(6), 826-840.
Cooper, S., & Rivera, J. (2023). Artificial intelligence in higher education quality assurance: A systematic review. Future of Higher Education, 12(4), 289-304.
Davidson, R., & Morgan, K. (2023). Predictive analytics in educational quality management. Educational Management Administration & Leadership, 51(3), 452-468.
Edwards, M., & Zhao, Y. (2023). Adaptive evaluation systems in higher education. Journal of Adaptive Educational Systems, 5(2), 78-94.
Harrison, P., Chen, J., & Williams, M. (2023). Implementation of adaptive assessment systems in higher education. Adaptive Learning Systems, 14(3), 234-251.
Henderson, L., & Matsuda, T. (2023). Blockchain technology in educational credentialing: A case study approach. Blockchain in Higher Education, 4(1), 45-62.
Hernández, R., & Kim, S. (2022). Big data analytics in educational quality assessment. Journal of Educational Data Mining, 14(2), 156-173.
Johnson, M., & Nakamura, Y. (2023). Deep learning applications in qualitative educational assessment. Deep Learning in Educational Assessment, 7(3), 289-306.
Kumar, V., & Patel, R. (2023). Challenges in implementing AI-based quality assurance systems. International Journal of Educational Management, 37(4), 567-582.
Martin, A., & Thompson, P. (2022). Artificial intelligence in educational quality assurance: Early implementations and outcomes. Artificial Intelligence in Education, 32(2), 234-251.
Mitchell, R., & Sánchez, C. (2024). Emerging trends in AI-powered educational assessment. Innovation in Higher Education, 19(1), 12-28.
Morrison, E., & Chang, W. (2023). Ethical considerations in AI-driven educational assessment. Ethics in Educational Technology, 16(4), 378-395.
Park, S., & Silverman, M. (2023). Deep learning analysis of qualitative educational data. Journal of Artificial Intelligence in Education, 33(2), 167-184.
Peterson, J., & González, M. (2023). Measuring social impact in higher education through AI analytics. Sustainability in Higher Education, 24(3), 412-429.
Peterson, K., & González, R. (2024). Future directions in educational technology: Challenges and opportunities. Future Trends in Educational Technology, 20(1), 15-32.
Phillips, D., & Ortiz, M. (2023). Continuous quality monitoring in higher education. Continuous Quality Improvement in Education, 11(2), 145-162.
Richardson, J., & Castro, M. (2023). AI-driven sustainability assessment in higher education institutions. Environmental Education Research, 29(4), 567-584.
Roberts, T., Johnson, K., & Lee, M. (2023). Standardization of evaluation criteria through machine learning. Assessment in Education: Principles, Policy & Practice, 30(2), 178-195.
Stensaker, B., & Maassen, P. (2015). A conceptualization of available trust-building mechanisms for international quality assurance of higher education. Higher Education, 70(6), 989-1004.
Sullivan, R., & Vázquez, L. (2023). Transparency and ethics in AI-driven educational assessment. Journal of Educational Ethics, 5(2), 89-106.
Taylor, M., & López, C. (2023). International accreditation harmonization through AI systems. Global Higher Education, 8(3), 234-251.
Thompson, J., Adams, R., & Wilson, K. (2023). Automation in educational quality assurance processes. Higher Education Quality Assurance, 15(4), 378-395.
Turner, N., & Ramírez, A. (2023). Natural language processing in educational quality assessment. Natural Language Processing in Education, 6(2), 156-173.
Washington, K., & Kumar, S. (2023). IoT integration in educational quality monitoring systems. Internet of Things in Education, 4(3), 234-251.
White, M., & Kim, J. (2023). Cross-cultural assessment through AI-powered systems. Cross-Cultural Education Assessment, 12(4), 312-329.
Williams, D., Chen, H., & Taylor, M. (2021). Digital solutions in institutional evaluation processes. Journal of Educational Technology & Society, 24(1), 156-171.
Wilson, R., & García, M. (2023). Process automation in educational quality assessment. Journal of Computing in Higher Education, 35(2), 289-306.
Zhang, L., & Lee, P. (2022). AI-driven objectivity in institutional assessment. Quality in Higher Education, 28(3), 312-329.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Geovanny Francisco Ruiz Muñoz, Juan Carlos Vasco Delgado, Silvana Lorena Lozano Zamora
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.